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SUMMARY

The use of the averaged periodogram of a discrete, random function in estimating the direct
_i .e., from a single random function) and cross power spectral density functions is described.
Application of the algorithm known as the "fast Fourier transform" is suggested cJsthe method
of calculating Fourier coefficients and details of the numerical techniques involved in its
derivation and use are given. Tl',eadvisability of modifying the Fourier coefficlenls before
convertincl to periodograms and averaging is pointed out and details of a suitable modif- ing
function, expressed in both the time and frequency domains, are given. The method of con-
verting the periodogram to power spectral dens;ty such that the integral of the latter functl ._
equals the mean square of the random function is derived, showing the requirement for an
empirically determined factor. Finally, a digital filter is specified which is suitab!e for use
:n a filtering and decimation process that is applied to the calculatlon of power spectral
density with a varying frequency rpsolution over the total frequency range of interest.
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•0 !NTRODUCTiON

The technique of powe: spectral density analysis has received considerable attention
in recent years because of its suitability i,- the ar._lysis of stationary random functions.
A random rrocess in time is stationary when its stct;stical properties obtained at o

i fixed time from an ensemble of sample ._u_ctions are independent of time. It is
generally sufficient for purposes of spectral density analysis for only the first two

: s_ctistical moments to be independent of time, i_. which case the process is said to be

! weakly stationary. For a Gaussian proces¢., of course, the independence of time of
the first tv,c,statistical moments implies strong stationarity. If, further, the statistical
properties of _ch sample record ore dependent only on time d;fferences and not on
absolute time the process is ergodic and the properties of the process may be determined
from one sample record.

Random or stochastic, processes occur in many branches of engineering including
communications, vibrations, acoustics, turbulent fluid flow and also in various aspects
of bio-dynamics, oceanography, meteorology and seismology; however, the majority
of random functions derived from physical processes ere rarely more than approximately
stationary and ergodic and can be treated as exactly so for only limited periods of
time.

Among uses of the power spectral density function are the investigation of physical
mechanismsunderlying random processes, the response of tinecr dynamic systems to
random excitations, study of radio propagation phenomena and the simulation of
random hme series. The join' properties of pairs of random functions are also important
and give rise to cross power spectral density analysis. The prefix "direct" is g!ven
here to the power spectral density function derived from a ,.'ngle random function where
it is necessary to distinguish it from the cross po_ .r spectral density of two random
functiens.

The most usual and convenient method of expressing the power spectral density function
of a random function of time is in terms of the Fourier transformation of the autocorrela-

tion function. This definition has the advantage of not being troubled mathematically
by difficulties and restrictions because of integral convergence properties, and leads
to on efficient method of computing estimates of the spectral density function. Full
details may be obtained from Reference 1 . In the case of the cross power spectral
density function the cross correlation function replaces the autocorrelation function.
An alternative method of defining the power spectral density function is in terms of
the square of the Fourier integral of the time function (or, in the case of cross power
spectral density, the product of the Fourier integral of the first random function and
the complex conjugate of the Fourier integral of the second). For the case of a
_andomfunction defined for all time, the existence of its Fourier integral requircs
that restrictions ore placed on the iorm of the time function; however, for the
finite time for wh.;ch the output of a real stochastic process is available and from which the
power spectral density must be estimated the Fourier integral restrictions are satisfied
and the Fourier transform may be used in the estimation process. 1he development of
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improved numerical techniques in evaluating the discrete form of the Fourier trans-
form has made the use of Fourier methods practicable and this report outlines the
application of these techniques to the economical estimation of direct and cross
power spectral density functions.

j Because or the finite amount of data available from a real random process the problem
of estimating its spect_,_l density is essentially a statist!cal problem of estimation based
on a sample drawn f_om a large pepulation_ with the inherent errors associated with

| this to,'l_ique A ,urtner source oFerror hi the estimation process, also due to the
I finite data sample, is introduced through the Fourier transformation process and is

equivalent to viewing the frequency domain through a _,iter with non-zero band-
I width, resulting in a distorted spectral function In the design of a power spectralI •

density estimation procedu._ethe major considerations are the minimizing of these
errors consistent with economy of computational effort or within the confines of the

I limi._ed amount of data available. Thesepoints are discussed further .:n subsequent
sections of this report•

!

I
I
i
I
I

I 2

I
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2.0 POWERSPECTRALDENSITY CALCULATION BY DIRECT FOUR!ER
TRANSFORMATION

2.1 The Modified Perlodogram

Ti,e starting point in calculating power spectral density of discrete random data by the
direct method is the periodogram defined as

I(k) = JA(k)i2 (2.1)

where

N-I

'Fo (A(k) = _- "= X(j) exp - 2_i--_- (2.2)

k = 0,1,2, ...,N-I

i =

and X(j) is the time function defined at N points in time, At apart. A(k) is the
discrete Fourier transform of the time function and is equivalent to a harmonic
analysis of X assuming a period of 1/(N At) since

N-I

"" X(j) = _ A(k)exp (2_i-_-) (2.3)
k=0

: j=0,1,2,..., N-I

The above definition of the Fourier transform of X(j) is equivalent to multir ling the?
infinite time function, of which X(j) is a sample, by a finite Dirac comb which has the

_ value 1 at points on th_ time c,xis given by j At and is zero elsewhere. Multiplica-
tion of two functions in the time domain is equivalent to convolving them in the

]i frequency domain and thus

_r
OC)

J_ A(fk) = / H(fk - f) Aco(f)df (2.4)

where Aoo(f) is the Fourier transformof Ihe infinite time function and H(IO is the

I Fourier transform of tke Dirac comb. This effect may be regarded as viewin_ A(fk)
through a "window" whose transmissibility is represented by H(10; the name spectral

!
!
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window has been g'ven in Reference I to IH(tol2and H(to is known as o kernel (of

the integral g;ven in (2.3)) or frequency window. The spectral window is analogous
to the frequency response of an electrical filter and the same criteria concerning
desirable churacteristics apply. Equation (2.4) shows that the calculated value of
A(f) at frequen¢.y fk is affec._ed by the value of A(to at all other frequencies f,

resulting in a Icck of definition of the true value of A(f) and thence in the true value
of spectr_i density. The degree of lack of resolution is dependent on the form of
H(f), and may be minimized by a choice of H(f k - tOwhich has its largest volue at fk

and decreases rapidly as Ilk - f I increases.

The spectral window corresponding to the Dirac comb _unction described above is

sin _ f Tm
JD(tO = Tm (2.5)TrfT m

where Tm -- N At, and the graphical representation of JD(f) is shown in Figure 1.
The characteristics of this window are observed to be far from desirable and ma_:y
better windows h_ve been proposed. Section 4 gives the details of a suggested
window which may be applied in either time or spectral domain. A periodogram
obtained from data to which a window *'e.,_r than the Dirac comb has been applied is

known as a modified periodogram.

The processof modifying a periodogram is obviously identical to the attempt to
eliminate the Gibbs Phenomenon, using the Fejer or Lanczos methods, when approxi-
mating an expansion of a periodic function with discontinuousderivatives hy a
truncated Fourier series. Details of these techniques are given in Reference 2.

L
2.2 From Periodogramto Spectral Density

_ It is well known that the modified periodogram is not a good estimate of the power
:- spectral density of a stationary, randomfunction of time_ the reason being that

while the mean periodogram for large N tends to the spectral density the variance of
I l(k) about the true value of spe:tral density does not decrease to zero as N -.- co,

that is, the spectral density estimator |(k) is not consistent.

I In Reference 3, however, it is shown how it is possible to obtain spectral estimatesfrom the periodogram. The method is to divide the N values of X(j) into p sections
each of length m, sumthe l(k) for each k and divide by p, i.e.,

="h" |r(k) (2.6)! :
where now k = 0,1,2, ..., m - 1 and the total number of values of X(j) which have

I been used is mp. Th_ lr(k) are obtained using m instead of N in Equation (2.2).
4
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In converting an averaged, modified periedogram to power spectral density severa!
conversion factors must be applied. To derive these the useful relation between the
data in the time domain and the Fourier coefficients known as Parseval's equation may
be employed. _'4s is

rn-1 m-1

1 _ X:_(j) = _ (a2(k) +b 2(k)) (2.7)
m

j =o k--0

which expresses the mean square of the time function as the sum of the Fourier
coefficients squared; the relationship is easily p_o'ved from the definition of a(k)
and b(k). The integral of the power spectral density function with respect to fre-
quency must also equal the mean square of X(j) so the periodogram must be divided
by the frequency interval. The coefficients a(k) and b(k) are symmetrical about
k = m/2 (see Section 5.2), and the power spectral density is define:; only for m/2 + 1
frequencies, requiring a factor of 2 to be applied to the periodoaram for the restricted
range of k. The application of a spectral window is equivalent to weighting the Xt;)
with weights W(j), and the weighted mean square is

m-I

X2(j) W2(j) m,/2

j=O 2m _ {(a'(k))' (b'(k))'}
- + (2.8)

m-1 m-I

w2(j) w k:O
j =o i --o

where a'(k) and b'(k) represent the modified Fourier coefficients. For the spectral

window defined in Section 4.0 the value of 1//m _ W 2(j) is 3//8.

it is desirable, however, that the integral of the power spectral density be equal to
the unweighted mean square of X(.j), which requires a further multiplying factor to be
used in Equation (2.8). This factor .,as been determined empirically for the spectral
window of Section 4.1, to a good approximation, as 6.0. Obviously this value
depends on the form of W(j) and will change for other spectral windows. Combining
these conversion factors, and noting that Af the frequency interval behveen coefficients
is 1/(m At) (or h/m, where h is the data sampling rate) the power spectral density is
given by

P(k) - 32m _ (2.9)h

assumingthe use of the data window described in Section 4.0, and whe:'e
k=0,1,2, ..., m/2.
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2.3 Numerical Techniques

The evaluation of A(k) from Equation (2.2) is facilitated by the use of a computational
method which expands the single transform of size N into a multi-dimensional trans-
form of dimensions which are factors of N. The most effective use of this method has

._eenfound to arise when N is chosen as an integral power of 2. Detc".s of this
computational technique, known as the "fast Fourier transform," are given in Refer-
ence 4 and a particular implementation is discussed further in Section 7 of this report.

Equation (2.2) applies equally to rea! and complex values of X(j), but since the time
series is always real the linearity property of Fourier transforms may be u_ed to calculate
a pair of ir(k ) results simultaneously, as follows. For the p sets of data form

Zs(j) ---X2s_l(j ) +i X2s(j) (2.10)

where

j = 0,1,2, .... m-1

r = 1,2,3,...,p

and s = 1,2,3, ..., p/2 assuming p is even.

If p is odd, there remains one set of data to be treated singly in Equation (2.2) with

zero imaginary part. Substituting Zs(j) in Equation (2.2) in place of X(j) the discrete

Fourier transform Bs(k) is obtained, and from this

1
+ Bs(m- k)} (2-1 la)A2s_I (k) = {Bs(k)

1 / *(m- k) t (2-11b)A2s(k ) =_ Bs(k) - Bs

Defining

Ar(k ) = ar(k ) +i br(k) (2.12)
and

Bs(k) = us(k) + i vs(k) (2.13)

then

1

a2s_l(k) = _" {us(k)+ Us(m-k)} (2.14)
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1 Ivs(k/ Vs(m k)/ (2.15)b2s_l(k ) = _- , - _

1

a2s(k) =_{vs(k ) +Vs(m-k)} (2.16)

1

b2s(k) =_{- Js(k)+us(m- k)t (2.17)

where k = 0, 1,2 ..... m/2.

The spectral window, details of which are given in Section 4, is then applied to the
a and b coefficients by summing products of triplets of coefficients and the weights
-1/4, 1/2, - 1/4, i.e.,

a'(k) - 1 ar(k_ 1)+ I 1r 4 _ ar(k) - _" ar(k + 1) (2.18)

and similarly for the b'r(k). At k = 0, a_(0) is given by the weighted sum of at(0 ) and

: ar(1 ) with weights 1/2, - 1/2 and at k = m/2 the last two values of ar(k ) are summed
I

with similar weights; b'r(0) and br(m/2 ) are obtained in the same manner.

For economy of computation time it is advantageous in calculating lr(k ) to take out
the common factors 1/2 in Equations (2.14) to (2.17) and (2.18), and also to take
out the factor 1/m in Equation (2.2) and calculate the coefficients in the from

4 m a'r(k). From Equations (2.6) and (2.9) the final expression in computing the

power spectral density is then

P

P(k) = _-_ = (4 m a'r(k))_ + (4m b'r(k))_ (2.19)

after substit'sting p = N/re.

A computer program which uses the abeve equations to calculate power spectral
density functions of stationary, discrete, random data is described in Reference 5.

: Also included in Reference 5 is the description of a computer program which usesthe
i equations of Section 3 to calculate the direcl power spectral density of each of two

discrete, random functions and the cross power soectral d_.nsity between them. The
result of an example calculation of power spectral density using the equations given
above is shown in Figure 9 and, for comparison, the psd for the same data obtained
using conventional analog equipment is shown in Figure 10.

7
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i
3.0 CROSS POWER SPECTRALDENSITY CALCULATION BY DIRECT FOURIER

I TRANSFORMATION

3.1 The Modified Cross Periodogram and Cross Spectral Density

For the case of cross power spectral dens!ty between time varying signals X(j) and
Y(.jl, defined at increments of time At, the cross periodogram may be defined as

I Ixy(k ) = A(k) C*(k) (3.1)

where A(k) is defined by Equation (2.2) and
N-1

I C(k) =_.1 _)-_" V('j) exp(-2sik'_'_.j).j=0 (3.2)

* means complex con.juga_e.

The remarks concerning data and spectral windows given in Section 2.1 apply equally

I to the cross periodogram, which needs to be m :lifted in the same manner as the
periodogram for a single function of time.

l Statistical stability is obtained as before by averaging over _ series of cross periodograms
calculated _romadjacent sets of time data, ec,ch of length m At. That is,

l . I P

Ixy(k) = P r_ 1 (Ixy(k)) r (3.3)

I
where k=0,1,2, ..., m- 1.

i 3.2 Numerical Techniques

l A(k) and C(k) can be evaluated using the FFT technique as mentioned in Section 2.3.Sets of X(j) and Y(j) may be transformed simultaneously by treating the _ as the real
and imaginary pints of complex data. Let

]_ Zr(,j) = Xr(j) + i Yr(j) (3.4)

wherej=0,1,2, ..., m- land r =1,2,3, ..., o. Substitute Zr(,j) forX(,j) "n
'_ Equation (2.2) to give the discrete Fourier transform Br(k) . Let Ar(k) and Br(k) hc_ve

real and imaginary parts as defined in Equations (2.10) and (2.11) and let

Cr(k) = cr(k) +i dr(k) (3.5)

8

1970003220-018



then

1

ar(k) = _ {ur!k)+ur(m- k) t (3.6)

1

br(k) =_'{vr(k)- Vr(m- k) 1 (3.7)

' Ivr kl vr/mcrCk)=_"

1

dr(k) =_{-ur(k)+ur(m- k)} (3.9)

A spectral window is then applied to the above coefficients by summing we:',hted
triplets as described in Equation (2.18). It is c,pparent that the power spectral
densities of the functions X(j) and Y(j) are also readily available from the above

coefficients. Denoting these spectral densities by Px(k) and Py(k), respectively,
and calculating the coefficients with the same multipliers as u:ed in Equation (2 .i9)
gives

P

Px(k) ='_-'_ : {(4ma;(k))2 +(4mb:(k)) 2} (3.10)

P

 rZ,l 1 I "lPy(k) =_--_- = (4mC'r(k)) 2 + (4mb'r(k)) 2

r

, P

Pxy(k) =_ _ 16m 2,ja' ' k b;(k) dr(k)
r=l I r(k) cr( ) + '

L

.. +i (b'r(k) C'r(k) - a'r(k) d'r(k)) } (3.12)

The cross power spectral d_nsity is seen to be a complex function in contrast to the
direct sr,ectral densities which are real Also, writingt "

l.

Pxy(k) = D(k)- i Q(k) (3.13)
r"

then it is easily shown that

Pyx(k) = D(k) + i Q(k) (3.14)

9
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4.0 A SPECTRALWINDOW

The need for weighting the time data, or alternatively smoothing the periodogram,
has been pointed out in Section 2.1. The weighting function in the time domain has
been named a data window and the square of its Fourier transform is called a spectral
window.

A window which embodies reasonably satisfactory characteristics is one based on the
Hanning lag window; the latter is commonly advocated when calculating power spectral
density by the indirect method using auto- or cross-correlation functio'Js and is defined
in the correlation, or time lag, domain. Details of the Hanning lag window, and the
general class of windows from which it derives, are given in Reference ] .

The data window proposed here is

I( 1W(t) =_. 1- cos Tm! 0<t<T m
(4.1)

W(t) = 0 T < t < 0m

where Tm = N At. Figure 2 shows a curve of W(U as a function of time; it is seen
that the effect of weighting a time function with this window is to reduce the ampli-

tude of the data samples near t = 0 and t = Tm relative to the center of the range, and

to remove the discontinuities ir_ the derivatives at each end of the data sample.

The frequency window, defined as the Fourier transform of W(t), is required for con-
volving with the Fourier coefficients obtained from Equations (2.12) to (2.15) and
(3.6) to (3.9). Thus,

(30

= f W(t) e-2_iftdtH(f) (4J2_

I
-- (_)

Substituting for W(t) and integrating gives

H(fl = _- Q0(f) - _ Q0 f + " _" Q0 f - (4.3)

where

sin 2_f Tm sin 2 _ f Tm

Q0 (f) - 2_ f + i _f (4.4)

10
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Substituting for Q0(f), Q0(f + 1/Tm) and Q0(f- 1/Tm) in Equation (4,3) and
rearranging

H(tO =2"-" 1-f2T2 / 2-__fTm +i _fTm tm

and the spectral window is given by

1 12J(f) : 7- IH(F) (4.6)
m

Thus,

Tm I sin _ f Tm 12
J(O = (4.7)

" 4(1- f2 Tm2)2 _ f Tm I

This is similar to the Ba'Hett spectral window described in References 1 and 3, but

with the factor (2 (1 - f2 T2m))-2 included here.

Where f Tm = :1:1 Equation (4.7) may be expanded to find the value ofas

/ 12
Tm sin _t f Tm

J(f) - 4f Tm _ (1 - f Tin) (1 +f Tm)_ (4.8)

That is, when f Tm = :1:1

: 1"_ (4.9)

The variation of J(f)/T m with f Tin, normalized to the value 1 at f Tm = O, is shown

in Figure 3. For comparison the Hanning spectral window is reproduced in Figure 4.

The window may be applied in ihe time domain by multiplying X(t) by W(t), or in the
frequency domain by forming the convolution of A(f) and H(F), where A(f) is the Fourier
transform of X(t). In the frequency domain the convolution function is

11
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' ,f) -- / H(_)A_r _', " ..
-CO

Hc.-.':_ver, in calculcrin_ A()) from :Jisc,_:te daie., u' el 1 (-_.10) my_. b..:,,_i:,qe_ .;

co

A'(k) -- ....] }Z h(O _,(I,,- • (4. 3,rTI
Q -:- Oo

where_ isr,c,v restricted to integer values. Definin(; q'(k) in terms._f r__' sn !
imaginary parts as in Equation (2.10) then

GO

_ a'k _11 sin 2'r_._ 1 sin 2"_(_ + !) I sin 21:.(;, - '!)
a'(k} =_- _ _ ' - i 2.,,_ 2 2_(_-_ 1) - 7 2_r(_ - 1_ ,

rjO

1 =_ b(k _ ) j 5il_ 2 T,4_ J '-.ii1'_1[ _._: :-" | sin: -,-" - . : i2 ,_ oo t _-_ 2 'n(_ 4-i) 2 ,_(.¢ _ ,) i

(4.)2)

In the first summation on the right hand side of Equation (4.12) any' value of J2other
than 0 or + | makes ali the trigonometric terms -'ero, and in the sesond summation
the trigonometric terms are all zero for all _. Thus,

I 1 1
a'(k) -: - _-a(k- 1) + _- a(k) - _ a(k -f 1) (4.13)

and similarly for the imaginary part of A'(k), leading to

I b(k= 1) + I 1" b'(k) = --_- _b(k) - _b(k ' 1) (4.1,i)

giving the smoothing weights used in Sections 2.3 and 3.2. When k = 0 the
coefficients are given by

'J 1 o(I) (4.15)a'(0) =_o(( 1) -

and when k = m//2

,a'(m/2) = }- a (n,,/2) - -_ a - I (.i. 16',

/¢'j

since the transform is symmu,iri,.al _bout k : 0 and m/__.

12
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! 5.0 ANALYSIS BANDWIDTH, FREQUENCY I_TERVAL AND STATISTICAL STABILITY

I

I 5.1 Ane!ysls Bandwidth

The bandwidth of the spectral window is analogous to the banJwidth of the filter used

in the analog method of calculating power spectral densi|y. It may be defined as the
inre:val between the frequencies at which the soectral windo.v has fallen to one half
its maximum value. Equating ihe right hand side of Equation C4.7) to half its maximum

I value, 8, the analysis bandwidth is by t_,.,ice the ,.,clue of f satisfying _heTm g_ven

resulting equation. The equation is

sin_fT 2

i m 7(1-f Tm) (5.1)
and the bandwidth is given by

2 f'
BW - (5.2)

Tm

where f' is a solution of Equation (5.1) with ; Tm as the variable. The approximate
value of f' is 0.73 and for discrete date T =m At =m.'hwherehisthedatam

sampling rate. Thus, the bandwidth is given by

h
BW = !.46-- (5.3)

m

which is approximately 3h/2m, and may be compared with the analysis bandwidth
of h/m for the Hannlng spectral window applied to power spectlal density calculated
by the method of Fourier transforming the correlation Function of the time signal(s).
It should be noted, however, that m lags specified for the calculation of the correla-

: tion function is equivalent to 2m points used in calculating the periodogram since the
correlation function is obtained for m positive and m negative lags, giving 2m values
of the correlation function; in the case of autocorrelation the evenness of th_ function

requires only m explicit values to be calculated. The difference in bandwidth for the
two spectral windows is clearly shown in Figures 3 and 4.

5.2 Frequency Interval

I The finite Fo,,rier transform defined in Equation (2.2) produces m pairs _ coefficients
for m values of the time function. The Fourier coefficients are spaced at frequency
intervals of h/m cycles/second giving a total frequency range of h cycles/second.
However, it is known from information theory (Reference 7, for instance) that the
h_ghest recognizable fr_.quency in a discrete signal sampled h times per second is

13
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h'2cycles,second. Further, it con t_eshown thata discrete Fouriertrcnsform of a
set of real data yields complex results, the real part _f which is symmetrical about the
m 2th point and the imaginary part of which is antisymmetrical about the mid-point.
In Reference 8 the Fourier coefficients are said to be "aliased" about the h/2 point of
the frequency scale. The coefficients for frequencies from h/2 to h may be con-
sidered as the coefficients of frequencies in the range 0 to -h,,'2; thus, only m/2 �]
values of power spectral density are obtained for positive frequencies and, as pointed
out in Section 2, the power spectral density must be multiplied by 2 to permit the
total power ._obe distributed over positive frequencies only.

5.3 Statistical Stability

The statistical stability of each estimate of power spectral density can be expressed
by the variance of the estimate. In erder to determine the variance in general terms
it is usually necessary to assumethat the time function concerned is a sample from a
Gaussian process and that the true power spectral density is relatively flat for fre-
quency increments equal to the ."equivalent width" of the spectral window (see
Reference ], page ]9). The variance of each estimate mc_ythen be derived, using
the covariance function of adjacent power spectral density estimates and the
properties of the spectral window, and expressed in terms of the coefficient of
variation (standard deviation/mean).

For a chi-square distribution, which ;s a distribution of positive terms derived from
a Gaussian distribution, it is known that the coefficient of variation equals (2/K) I/2
where K is the number of degrees of freedom o_ the chi-squore distribution. By
analogy, it is possible to express the stability ._t:the power spectral density function
in terms of the number of degrees of freedom of a chi-square distribution with the
same coefficient of variation. Theseare generally known as "equivalent degrees of
freedom" of the spectral density function. For the method of calculating power
spectral density described in Sections 2 and 3 the variance of the spectral estimates
is shown in Reference 3 to be given approximately by

A

Variance of P(k) = P2(k) (5.4)
P

A

where P(k) is the true power spectral density corresponding to the calculated value
P(k), and p = N/m. The expected, or average, value of p2(k) is

E{P(k)}2 = (5.5)

and thus

Variance of P(k) = (Coefficient ef Variation) 2 = 1 (5.6)

E l P(k)} 2 P

14
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and, using the relationship be_veen coefficient of variation and K for a chi-square
distribution, the equivalent degrees of freedom are given Dy

2N
EDF - (5.7)m

This applies strictly only to Gaussian signals without sharp peaks in the spectrum; but
although few recl signals ere exactly Gaussian a large number c_ natural random pro-
cessesapproximate to Gaussion distributions due to central limit effects and EDF is

thus o useful and meaningful expression of the statistical stability of the power spectral
density. It is shown in Reference 1, p_ge24that in the vicinity of sharp peaks the
equivalent degrees of freedom become equal to 2.

15
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6.0 DATA FILTERING AND DECIMATION

6.1 Object of the Filtering and Decimation

In the previous section it is seen that the frequency interval and anaZysis bnndwidth
are functions of the data samaling rate h and the number of transform points m. For
e fixed value of h the bandwidth is proportional to 1;'m, and thus the narrower the
bandwidth the larger the value of m; but from Section 7 it will be observed that m
must be an integral power of 2 to use the FFT implementation specified there, -. hich
means Ihat as the required m gets larger available values become more res,ricred. A
more important point is that the time required to compute the pu_,'er spectral density
is proportional to m. It is desirable, therefore, to choose m as small as possible
consistent vith tl_e requirement that the bandwidth permits adequate detail to be
shown in the power spectral density results.

The power spectral density results are usually converted to a logarithmic form, ana

the bandwidth requirements are then determined by the resolution required at low
frequencies. However, in this case the frequency resolution becomes unnecessarily
high at middle and low frequencies at the expense of computation time. One solution
to this problem is to divide the total frequency range into a series of bands (on a
logarithmic basis) and compute results with a different resolution in each band. A
convenient method of doing this is to vary the sampling rate h within each band, but
because h determines the recognizable frequency content in the data it is necessary
to filter the data before reducing the sampling rate.

If the frequency bands are octaves then the appropriete filter is low-pass with a cut-
off frequency one half of the samplin_ rate. The sampling rate is reduced by cal-
culating only alternate filtered data points, which effectively discards one half of
the points [n the series, resulting in a doubling of the time interval between data
points. This process has been called "data decimation" in Reference I. If there are
n frequency bands the sampling rates are h, h/2, h/4, ..., h/2(n-1), respectively,
starting with the highest band and descending. It will be noted that since m is
conston" "he bandwidth doubles in each ascending octave band. If it is desired to
keep the equivalent statistical degrees of freedom constant in each band then the
same number of data points r._must be used for the analysis in each band, which

implies that the total number of data points required is 2n-1 • m for n frequency bands.

6.2 A Numerical Low PassFilter

,'.n ideal low passfil. Jr has the following characteristics:

G(f) = I f<fc
(6 .I)

G(t0= 0 f > f
C
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where fc is the cut-of: frequency in cycles second and G(0 is the frequency response
of the filter. In the time domain the fi'":,er output ,s the convolution of the inverse
Fourier transform of G(F) and the input signal. This is,

GO

Xf(t) = / g('r) X(t- "r) d'r (6.2)
-gO

where g(t) is the inverse Fourier transform of G(f) and X(t) is the time function which

is to be filtered to give Xf(t).

The Fourier transform of G(f) is

1 sir, 27 fc t
g(t) - (o .3)

-_ t

However, to obtain the properties of the ideal filter specified by the transform pair
defined by Equations (6.]) and (6.3) rile time function X(t) must be defined for all
time. In practice, of course, the time function for real data is always truncated to
a finite range and this becomes equivalent to truncating the filter response in the time
domain. It is shown in Reference 6 that the resulting filter is far from ideal and that
an improvement ,:an be obtained by modifying the truncation process to give a sharper
cut-off and eliminate the oscillations in the frequency responseof the filter. The
modification is to multiply the filter response in the time domain given in Equation (6.3,t
by a function similar to the data window specified in Section 4, which forces g(t) to
approach zero smoothly before being truncated. In Reference 6 modifying functions of
this type are given the name apodizing functions because of an analogy with a process
in optics. From Reference 6, the most effective apodizing function is

1( 2_ fc t) aF(t) :-_ I + cos --a Itl -<
(6.4)

o

F(t) = 0 Itl > 2-r
c

where a is a constant which controls the number of zero crossings of the product
g(t) F(t) for a given fc" The filter is given by the Froduct g(t) F(t) and its L'equency
responsefor a : 5 is given in Figure 5 and for a : lO in Figure 6; the corresponding
responsesin the time domain are shown i,_ Figures 7 and 8, respecti,,ely. The cuf-off
frequency fc is taken to be 500 cycles/second.

For he case of discrete data, where X(t) is known at intervals of time 6t, Equation
(6.2) must be converted to discrete form, that is,

17
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n

xf(i/ : g'(kl X(j-k/ At (6.s)
k_-n

where g'(k) is defined for 2n -' ! discrete points and i _he filter function g(t) F(t) in
discrete form Substituting fo_ g'(k) gives

n
1 t cos21t fc k Att sin 21t f,_ k _t

Xf(j)=_-_ _ X(j-k)_I _ a I k_ (6.6)
k_-- n

,,here n = a/(2 fc At).

6.3 Cut-Off at One-Half the Frequency Range

For the particular case mentioned in Section 6.1, where the signal X(j) is filtered
to remove one half of its frequency content, fc -- 1/(4 At). Substituting in
Equation (6.6):

26

_2 ( tt k) sin (k_t/2) (6.7)
_ I x(j- k) 1 +cos _ k

Xf(j) 21t k= - a

The discrete filter weights in this case are

( kit) kit
_ 1 1 + cos sin -- (6.8)

g'(k) 2k_t _ 2

which are zero for even vclues of k. except at k = 0, and the non-zero terms alternate
in sign. In numerical ca!culations using the filter, advantage may be taken of the fact
that the filter is an even function and the number of multiplications can be reauced by
a factor ef 2 by summing pairs of X(j) which have the same weights before multiplying.
Thus, for a = 5 giving 21 value: of g'(k), 10 of the weights are zero and there are 6
distinct non-zero weights which means that for each filtered point 6 multiplications and
11 addit;ons are required.

6.4 Octave and One-Third Octave Analysis

The technique of carrying out power spectral density analysis in the manner described
in Section 6.1 has particular application in the case of octave and one-third octave
analysis, or for any other percentage frequency bandwidth analyais. Results are
obtained in a series of octave bands, with a constant frequency resolution in each
band, and converted to the required bandwidth by an averaging process, interpolating
between frequencies where required. Applying this technique, Figure 11 shows the
results of Figure 9 obtained using four frequency bands, and Figure 12 presents a third
octave form of the same results.

18
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J 7.0 THE FAST FOURIER TRANSFORM

I The "fast Fourier transform': is the name given to an algorithm which Dermlts the rapid
evaluation of the discrete Fourier transform of a set of data, compared with the straight-
forward method of calculating the Fourier coefficients. The algorithm in its present

I form was first published in Reference 4 and a minor variation has since been produced
(Reference 10); the historical background in the discovery of the algorithm is covered
in Reference 11. The basic idea of the algorithm will be summarized here, and an

attempt made to illustrate the method for a particular case.

Define a function

1
:e

which has the value 1 for all integral value_ of m/N and has the property e(a+b) =
e(a)e(b). The discrete Fourier transform of X(j) is

N--1
1

A(k) = -_- _ X(j) e (k___.N) (7.2)

j=0

If N has p factors such that N = rlr 2.... r then j and k may be expressed asP

= .. +" rlr 2 .... r + +'i2 rnr2 +Jwrl +Jo (7.3)J "ip-1 rl r2 " "rp-1 Jp-2 p-2 ....

k = kp_ lrprp_! .... r2 +kp_ 2rprp_ I .... r3+ .... +k2 rp rp_I +k I rp+ k0 (7.4)

where

Jp-I' k0 =0,1,2, .... , rp_ w- ]

Jp-2, kl = 0,1,2, .... , rp_2 - 1
l

-J0' kp-I = 0tl,2, .... , r 1 - 1
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I _ubstitutingln e(kj/N) and eliminating all integer terms in the argument gives

[ I ( kP-'--'_2 --_-) (kP -2 kp-3 k° )
(k._l.N) kP-._! + + .., + +j + _+....-f

e = e J0 rl rl r2 1 \ r7 r_ r3 r2 r3.... rp

and the discrete Fourier transform can be exp-ossed as

rl-1

1 eIJ0kp-l]e(A(k0'kl'k2' .... 'kp-l)= "N" _ \ r---_-/ ]0 k r, r2 ....
Jo:O

r2-1 (j, kp__/e ( rkp__ + k0 ])X _ e \ r2 I ,iI Lrl r2 .... 4 r2 r]....rp
jl=O

r3-1 e( Jp-2k_____0/rp-1 . k0.)X _ .... \rp_,rp, _X{Jo,Jl,.j2. ..... ,jp_I) e(-JPp (7.6)
J2=O jp_! =0

It can be seen that the single dimension transform of size N has been converted to a

p dimensional transform of sizes ri , r2 , .... , rp plus the multiplication of each

transform except the outer one by an e function which has been called o "twiddle
factor" by Gentleman and Sande (Reference 10). Cooley and Tukey in Reference 4
show that the ratio of the number of arithmetic operations, and hence computation

time, in the straightforward method to th¢ FFT (fast Fourier Transform) is N/log r N

(when the p factors of N are alJ equal to r). Experience with the algorithm, applied
to automatic digital computers, has shown these speed improvements to be attainable and
has brought hitherto impracticable us¢s of the discrete Fourier transform within the bounds
of practicability.

2O
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The variation introduced byRe[erence 10 is to rearrange the e terms in Equations
(7.5) and (7.6) in the following manner:

e(+: oikp,_0____k( )•k_( /
I :I r 1 r2 Jo +]I ri _ J0 +J! rl +j2 rl r?rlr r /2 3

k0 )I+ .... + ( + + + •r 1r2 r3 .... rp Jo Jl rl J2 rl r2 .... +Jp-1 rl r2 .... rp-1 (7.7)

and Equation (7.6) is written

1 _ e (j°kp-lle {Jo!P'--'_"/
A\ko,kl,k2,{ .... ,kp_,] :1 _" \"r'-_/ _ r 1r2 /

jo-=0

, r3- 1

r2-1 ( j' kp-2/ ( _p'3 (J0+J'rl))E

e .. JO

)" E e r2 '/ \rl r2 r3

J0= 0 J2 = 0

rp,x23_(_o,J,,J:.-.-,J_-,)_-_- _._>
Jp.1 =0

Equation (7.8) has a slight advantage over (7.6) when being programmed for evalua-
tion on a digital computer.

The us _ of constant factors r = 2, or r = 4, leads to the best compromise between cal-
culation speed and convenience, and the algorithm has been programmed extensively
in fhis form; in order to use the algorithm under these conditions N must be an
integral power of 2: but in many cases this is not a severe restriction. The imptemen-

tatlon documented in Reference 5 for calculofing power spectral density from Equa-

tions (2.19) and (3.12) uses factors of r = 4, plus, if log 2 N is odd, one factor of 2.
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As an illustration to aid in the understanding of the werkings oF th_ algorithm consider

the case of N = 64, glv_ng r 1= r2 = r3 = 4, in Equation (7.8). Let the data X have

subscripts 0 to 63, and

I j = j0+_jl + 16J2 (7.9)

_4k 1 + 16k2 (7.10)k = k0

I
Equation (7.8) becomes

1 [j0k2] [J0kl i

I A(k0+4kl+16k2) = t'_ _ e _'_"-] e_ 16 ]
J0=0

1
!

3

I ×_-'_ e('_'_) e(6_ (j0+4j,))

l Jl =0

J2=0

All the subscripted indices take the values of 0, 1, 2, 3. In Equation (7.11) all the

t e functions with a factor 4 in the denominator of the argument have real and
imaginary parts select,_d from 0 or :I:1, since they are exponentials with arguments
as multiples of 7/2, and only additions and subtractions ale involved when using

I them. The complex matrix formed by the e function of the form _(j_k i/rs ). p-s- +1

for all values of Js and k is

' I p-s-I

I.

I
22
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1,0 1,0 1,0 1,0 1

1,0 0,1 -1,0 0,-1

1,0 - 1,0 1,0 -I,0

1,0 0,-1 -1,0 0,11
J

if_which the real and imaginary parts are combined in the form a, b.

A further point in applying the FFT in a digital computer is that the transform of a set
of data may be calculated without the use of scratch storage if the original data are not
required after the transform has been obtained. The results of the transform may be
stored in place of the inpu,t data. The steps in evaluating the transform may be written
in terms of matrix operaiions provided the definition of a non-sta_Jdard matrix opera-

- tion, which is given below, is accepted. In the following it is recognized thatall
; arithmetic is of complex form:

; (i) for k0 -- 0, 1, 2, 3 carry out the inner multiplication and summation over J2

for all values of J0 and j!, and store the four results at each summation in

place of each datum involved in the summation. Thus, for J0 = J! = 0

[X,o.Xxd [ x_][_] _7,_,16' X32' = X0' XI6' X32'

and for J0 = 0, Jl = 1

and so on for all J0 and Jl combinations. The array X' may now be :.ub-

scripted by (Jo +4j! + 16k 0).

(il) the matrix of "Ivciddle factors" in the middle summation is indexed by

j! =0, 1, 2, 3, for glven J0 and k0 and can be represented asa 4xl

matrix IT(j1) ]. The middle summation is thus, for J0=k0--0.

: Ix,0.x_x,.x,,_]:Ix;.x_x_.x,,]liz]"E'_,']I:. • , (7.15)

23
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t
I where the operation denoted by * means thal eack element of each column of

IZ1 i._ multiplied bY the c°rresp°nding e_ement Gf the c°lumn matrix IT-I; f°r

j0=0and k0 =1.

I" " " = X': X2o,X24,X2s 1X_, X20, X24, ),28

and so on {'or all combinations of J0 and k0 • The new array may now be sub-

scripted (J0+ 4k1 + 16 k0).

t,::_ the T matrix for the outer summation is indexed by J0 and the summaHon is
carried out for_ll va!uesof k0 and k1. Thus, for k0 =k 1 =0

[x ,,,_',,,,,]:Ixx,,x,,] *_,_0_ •,0",x_, x, ,0,,,, " x&' {7.1_

and for k0 = 0, k1= 1

,,,,,,,,, ,,,," ;1!I -l*Iix:,,,_,,x_,×,1: !x,,_,,×,,× 0
and so on for all combinations of k0 and k!.

The final values of A _re subscripted (k2 + 4kl + _5 k0) which is not the required

final order, and the results must be rearranged. It can be seen that if the subscript

i._given a binary representation then the order in which A is obtained is equlvalent
to reversing the digits of the subscript in the requi,'ed order, and this fact racy be of
use in tk_ procedure for reordering the computed results.
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i 8.0 EXTE?'4SIONSTO RELATEDFUNCTIONS

J Direct and cross-power spectral densities are used in the calculation of several useful
t functions which express the properties of random processes or the response and excita-

tion of linear systems. These functicnsinciude:

(i) coherence function

i pxv(k)i 2

-- ) Py(k) (8.1)

(ii) spatial co-relation function tor re!ating the random variation of a property at
two points in space x and y

Dxy(k)
3(k) : (8.2)

•,/Px(k)Py(k)

where Dxy(k ) is the real part of Pxy(k).

(iii) frequency response function

F(k) - Pxy(k) (8.3)
Px(k)

where Py(k) is the output spectral density of a system due to the input function

whose spectral density is Px and Pxy(k) is the cross power spectral density
between them. The pkase ang!e _ of the frequency response function is equal

to the phase angle of the cross-power spectral density Pxy(k).

(iv) autocorrelation function, which may be obtained by the inverse cosine trans-
form of the power spectral density, i.e.,

m/2 ( 27 kj
Rx(J) = h _ Px(k)cos --_). (8.4)

k=O

where, if Px(k) has been cbtained using a spectral window, Rx(J) is the

product of the autocorrelation function and the lag window corresponding to
the particular spectral window used.

2s
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I
!

(v) cross correlation function, obtained by the inverse discrete Fourier trcnsform
of the cross power spectral density

i Rxy(J) S(j) + F(j) (8.5)

I Ryx(J) = S(.j) - E(j) (8.6)

i where

,'TII 1 2

+ : ""(2_ikj] (8.7)l S(j) i E(j) h _ Pxy(k)exp ,_-,
k=O

The remarks concerning spectral and log window apply here also.

t
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